Wall shear stress in backward-facing step flow of a red blood cell suspension.

نویسندگان

  • F J Gijsen
  • F N van de Vosse
  • J D Janssen
چکیده

An experimental investigation of the wall shear stress distribution downstream of a backward-facing step is carried out. The wall shear stress distribution was determined by measuring the deformation of a gel layer, attached to the wall downstream of the step. Speckle pattern interferometry was applied to measure the deformation of the gel layer. The measured deformation, combined with the properties of the gel layer, served as an input for a finite element solid mechanics computation to determine the stress distribution in the gel layer. The wall shear stress, required to generate the measured deformation of the gel layer, was determined from these computations. A Newtonian buffer solution and a non-Newtonian red blood cell suspension were used as measuring fluids. The deformation of the gel layer was determined for a Newtonian buffer solution to evaluate the method and to obtain the properties of the gel layer. Subsequently, the wall shear stress distribution for the non-Newtonian red blood cell suspension was determined for three different flow rates. The inelastic non-Newtonian Carreau-Yasuda model served as constitutive model for the red blood cell suspension. Using this model, the velocity and wall shear stress distribution were computed by means of a finite element fluid mechanics computation. From the comparison between the numerical and the experimental results, it can be concluded that wall shear stresses, induced by the red blood cell suspension, can be modeled accurately by employing a Carreau-Yasuda model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Particulate suspension Jeffrey fluid flow in a stenosed artery with a particle-free plasma layer near the wall

The present article concerns the problem of blood flow through an artery with an axially asymmetric stenosis (constriction). The two-layered macroscopic model consisting of a cell-rich core of suspension of all the erythrocytes described as a particle-fluid suspension (Jeffrey fluid) and a peripheral zone of cell-free plasma (Newtonian fluid). The analytical expressions for flow characteristics...

متن کامل

Ivestigation of Entropy Generation in 3-D Laminar Forced Convection Flow over a Backward Facing Step with Bleeding

A numerical investigation of entropy generation in laminar forced convection of gas flow over a backward facing step in a horizontal duct under bleeding condition is presented. For calculation of entropy generation from the second law of thermodynamics in a forced convection flow, the velocity and temperature distributions are primary needed. For this purpose, the three-dimensional Cartesian co...

متن کامل

Dependence of adhesive behavior of neutrophils on local fluid dynamics in a region with recirculating flow.

We have recently described patterns of adhesion of different types of leukocytes downstream of a backward facing step. Here the predicted fluid dynamics in channels incorporating backward facing steps are described, and related to the measured velocities of flowing cells, patterns of attachment and characteristics of rolling adhesion for neutrophils perfused over P-selectin. Deeper (upstream de...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

Study of Pulsatile Non-Newtonian Blood Flow Through Abdominal Aorta and Renal Arteries Incorporating Fluid- Structure Interaction

Background: The interaction between the blood and the vessel wall is of great clinical interest in studying cardiovascular diseases, the major causes of death in developed countries.Objective: To understand the effects of incorporating fluid-structure interaction into the simulation of blood flow through an anatomically realistic model of abdominal aorta and renal arteries reconstructed from CT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biorheology

دوره 35 4-5  شماره 

صفحات  -

تاریخ انتشار 1998